Oscillations at the Si/electrolyte contact: Relation to Quantum Mechanics
نویسندگان
چکیده
The basic process at the surface of the Si electrode is characterized by a cyclic oxidation of a thin silicon layer and the subsequent removal of the oxide by etching. Here, the oxide thickness evolves not uniformly due to cracks and nanopores. The mathematical model used to describe the phenomenon is based on a sequence of time dependent (oxide thickness) oscillator density functions that describes the passing of the (infinitesimal) oscillators through their minimum at each cycle. Two consecutive oscillator density functions are connected by a second order linear integral equation representing a Markov process. The kernel of the integral equation is a normalized Greens Function and represents the probability distribution for the periods of the oscillators during a cycle. Both, the oscillator density function and the twodimensional probability density for the periods of the oscillators, define a random walk. A relation between the oscillator density functions and solutions of the Fokker-Planck equation can be constructed. This allows a connection of the oscillations, originally considered only for the description of a photo-electrochemical observation, to the Schrödinger equation. In addition, if the trajectory of a virtual particle, located at the silicon oxide electrode surface, is considered during one oscillatory cycle, then it can be shown that the displacement of the particle measured at the electrode surface performs a Brownian motion.
منابع مشابه
Rate of Pressure Rise in SI Engine Cylinder and its Relation to Knock (RESEARCH NOTE)
Tremendous efforts have been devoted to study the complex phenomenon "knock in spark ignition engines. There is an increasing interest in providing some tools to study knock in simulated data. In the previous studies, engine cylinder pressure oscillation has been used to investigate knock. Unless those methods involved highly complex non-detailed chemical relations, the previous studies were de...
متن کاملFeynman Path Amplitude Calculation of Neutrino and Muon Oscillations
Predictions are presented for the oscillation phase in neutrino oscillations following pion decay at rest and in flight, muon decay and nuclear β−decay at rest as well as for muon oscillations following pion decay at rest and in flight. The neutrino oscillation phases found disagree with the conventionally used value: φ 12 = ∆m 2 L/(2P). The same oscillation phase is found for neu-trino and muo...
متن کاملOscillations at the Si/electrolyte contact: Discretization of phase oscillators
The origin of sustained current oscillations at the Si/electrolyte contact is not fully understood. Oscillatory functions are regarded which describe the oscillating oxide thickness at the silicon electrode. We consider an initially vanishing two-dimensional time dependent function which oscillates between a minimum and a maximum oxide thickness at each location of the electrode. The function i...
متن کاملEnergy dispersion relations for holes inn silicon quantum wells and quantum wires
We calculate the energy dispersion relations in Si quantum wells (QW), E(k2D), and quantum wires (QWR), E(k1D), focusing on the regions with negative effective mass (NEM) in the valence band. The existence of such NEM regions is a necessary condition for the current oscillations in ballistic quasineutral plasma in semiconductor structures. The frequency range of such oscillations can be extende...
متن کاملQUANTUM TUNNELING IN MEDIUMS WITH LINEAR AND NONLINEAR DISSIPATION
We have applied the method of integration of the Heisenberg equation of motion proposed by Bender and Dunne, and M. Kamella and M. Razavy to the potential V(q) = v q - µ q with linear and nonlinear dissipation. We concentrate our calculations on the evolution of basis set of Weyl Ordered Operators and calculate the mean position , velocity , the commutation relation [q, p], and the energ...
متن کامل